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2 Centro Universitário Barão de Mauá, Rua Ramos de Azevedo, 423, 14090-180, Ribeirão Preto,
SP, Brazil

E-mail: cesartercariol@gmail.com, fekiipper@yahoo.com and asmartinez@ffclrp.usp.br

Received 8 September 2006, in final form 3 January 2007
Published 14 February 2007
Online at stacks.iop.org/JPhysA/40/1981

Abstract
Consider that the coordinates of N points are randomly generated along the
edges of a d-dimensional hypercube (random point problem). The probability
P (d,N)

m,n that an arbitrary point is the mth nearest neighbour to its own nth nearest
neighbour (Cox probabilities) plays an important role in spatial statistics. Also,
it has been useful in the description of physical processes in disordered media.
Here we propose a simpler derivation of Cox probabilities, where we stress the
role played by the system dimensionality d. In the limit d → ∞, the distances
between pair of points become independent (random link model) and closed
analytical forms for the neighbourhood probabilities are obtained both for the
thermodynamic limit and finite-size system. Breaking the distance symmetry
constraint drives us to the random map model, for which the Cox probabilities
are obtained for two cases: whether a point is its own nearest neighbour or not.

PACS numbers: 05.90.+m, 02.50.Ey

1. Introduction

Consider N points, whose coordinates are independently and uniformly distributed along the
edges of a d-dimensional hypercube. The determination of the distance and neighbourhood
statistics between any pair of points is known as the random point problem (RPP). This is a
standard approach to construct disordered (random) media.

Due to boundary effects and triangular restrictions, the distances between any pair of points
are not all independent random variables. For fixed N in the RPP, as the system dimensionality
d increases, the boundary effects become more and more pronounced and the distances
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between pair of points become less and less correlated. One can minimize boundary effects
considering periodic boundary condition, and in the limit d → ∞ all the two–point distances
are independent and identically distributed (i.i.d.) random variables. This is the random link
(distance) model (RLM) [1], which is a mean field description of the RPP. Intuitively one
think of the distance Dij between the arbitrary points i and j as D2

ij = ∑d
k=1

[
D

(ij)

k

]2
, with

D
(ij)

k = x
(i)
k − x

(j)

k . If D
(ij)

k were independent and gaussian distributed (zero mean and unitary
variance), the distribution of D2

ij would be χ2 with d −1 degrees of freedom, which converges
to a gaussian in the limit d → ∞. The intriguing point is that the coordinates are quenched,
so that the D

(ij)

k are not all independent. Nevertheless, the central limit theorem is expected to
be valid even with finite range correlations (scales are renormalized to the correlation length).
This leads to a gaussian random variable. The dependence among the Dij is assured by the
triangular inequality, which is somehow weakened as d increases.

In the RLM, there exist two Euclidean constraints: (i) the distance from a point to itself
is always null (Dii = 0, for all i) and (ii) the forward and backward distances are equal
(Dij = Dji , for all i, j ). The second constraint limits numerical simulations to small systems,
as long as the distance matrix requires a memory consumption of order O(N2) in a conventional
implementation (note that in the RPP the coordinates of points are at disposal and one can
calculate all the distances related to only one point at once, leading to a memory consumption
of order O(N)). The algorithm presented in [2] implements RLM with memory consumption
of order O(N), as in RPP. If the distance symmetry constraint is broken, the model becomes
the random map model (RMM) [3, 4]. In this latter model, a point can be whether its own
nearest neighbour (Dii = 0) or not (Dii �= 0), which is the mean field approximation for
Kauffman automata [5].

Both, the RPP and RLM have been very fruitful in the determination of numerical
and analytical results in several interesting systems. Applications range from statistics on
the optimal trajectories in the context of travelling salesman problem on a random set of
cities [6–10], passing by frustrated dimerization optimization modelled by the minimum
matching problem [11, 12] (or equivalently spin-glasses [11]), and going to partial self-
avoiding deterministic tourist walk [13–16] and its stochastic version [17, 18]. Partial self-
avoiding walks have been our main motivation to address the RPP and its mean field models.
Although the distance distribution as a function of the dimensionality d plays an important
role in the stochastic tourist version, in the deterministic case one is mainly interested on the
neighbourhood ranking of random points.

As pointed above, boundary effects are important as the dimensionality of the system
increases. The points get closer to the surface and to capture the bulk effect, one must increase
N. In certain systems it may be difficult to have such large N values and it would be suitable
to have analytical expressions for finite N, for instance, to test reliability of numerical codes
or to develop new statistical tests.

Here we focus on the distribution of neighbourhood ranks. The probability P (d,N)
m,n that

an arbitrary point is the mth nearest neighbour of its own nth nearest neighbour in the RPP
has attracted attention of researchers since the seminal studies of Clark and Evans [19] and
Clark [20] on some aspects of spatial pattern in biological populations. They devised the
term reflexive neighbours for the case m = n and their calculated reflexive neighbourhood
probability ranking has been corrected by Dacey [21] (m > 1) in the context of geographical
analysis and then generalized (for m �= n) by Cox [22], which we call the Cox probabilities.

In this paper, in section 2 we obtain the Cox probabilities using only Poisson distribution
instead of the various distinct distributions used in the original paper [22]. As in Cox
calculation, we write the probabilities in the thermodynamic limit N → ∞. Unlike Cox,
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Figure 1. Two-dimensional Poissonian process. The circles centred in the points I and J have
surface V2 = πr2 and the intersection has an area V∩,2 = V2(1 −p2) = (2π/3 −√

3/2)r2. There
are i points in the intersection of the V2 surfaces and in the I and J crescents there are n − 1 − i

and m − 1 − i points, respectively.

we write them in terms of known functions (rather than in terms of an integral) and known
distributions (multinomial, binomial and hypergeometric). In section 3, the use of known
special functions allows us to take the high dimensionality limit, which leads to the RLM
neighbourhood probability. Using similar arguments to obtain Cox probabilities, we are able
to obtain neighbourhood probability for finite-size RLM systems. Finally, in section 4 we
explicitly write the Cox probabilities for the two considered case of the RMM and finish with
the concluding remarks (section 5). All analytical results have been compared and validated
by numerical Monte Carlo simulations. These results have been important in the validation of
numerical codes and in the derivation of analytical results in the study of partially self avoiding
deterministic and stochastic walks presented in [13–18].

2. Alternative derivation of Cox probabilities

This alternative derivation of Cox formula is simpler than the original paper, since it uses only
the Poisson distribution, rather then the Poisson, binomial and gamma distributions as in the
original paper.

In a d-dimensional Poissonian medium with a mean density of λd points per unitary
volume, the probability that a volume Vd (with an arbitrary shape, even with disconnected
parts) contains k points is given by the Poisson distribution Pois(µ; k) = µk e−µ/k!, where
k = 0, 1, 2, . . . ,∞ and µ = 〈k〉 = λdVd is the expected number of points inside the volume
Vd . Note that the thermodynamic limit is taken letting k freely vary and that the only parameter
of this distribution is µ (the medium dimensionality d is not a relevant quantity).

Let I and J be two points of a d-dimensional space separated by a distance r. The
volume Vd(r) of the hypersphere of radius r centred in I (thus, which pass through J )
is Vd(r) = πd/2rd/�(d/2 + 1) = π(d−1)/2rdB[1/2, (d + 1)/2]/�[(d + 1)/2], where
�(z) = ∫ ∞

0 dt t z−1 e−t = (z − 1)! is the gamma function [23] and B(a, b) = B(b, a) =∫ 1
0 dt ta−1(1 − t)b−1 = �(a)�(b)/�(a + b) is the beta function [23]. While the former

generalizes the factorial the latter is a generalization of the inverse of Newton binomial.
Obviously the volume of the hypersphere centred in J passing through I is also Vd(r). Figure 1
shows the case d = 2.



1984 C A S Terçariol et al

The volume V∩,d (r) of the intersection of these two hyperspheres is V∩,d (r) =
{π(d−1)/2rd/�[(d + 1)/2]} ∫ 1

1/4 dt t−1/2(1 − t)(d−1)/2. The relative volume of a crescent

(compared to one hypersphere) is pd = [Vd(r) − V∩,d (r)]/Vd(r) = ∫ 1/4
0 dt t−1/2(1 −

t)(d−1)/2/B[1/2, (d + 1)/2] or

pd = I1/4

(
1

2
,
d + 1

2

)
, (1)

where Iz(a, b) = ∫ z

0 dt ta−1(1 − t)b−1/B(a, b) with Re(a) > 0, Re(b) > 0 is the normalized
incomplete beta function [23]. Note that pd depends exclusively on the dimensionality d and
does not depend on the hypersphere radius r.

It is interesting to mention that pd plays an important role in the parametrization of
the deterministic tourist walk problem [15, 16]. It can be generalized to an arbitrary distance
DIJ = rx between the points I and J , with x ranging from 0 to 2 (from concentric hyperspheres
to disjoined ones). In this case, one has pd(x) = I(x/2)2 [1/2, (d + 1)/2], with pd(1) = pd ,
which has allowed us to tackle analytically the stochastic tourist walk problems [17, 18].
Further, the mean overlap calculation has been done by Dall and Christensen in [24] in the
random graph context.

The following conditions must hold for I be the mth nearest neighbour of J and J be the
nth nearest neighbour of I:

(i) there must exist i points inside the intersection of the hyperspheres, with i ranging from
0 to min(m − 1, n − 1), the expected number of points is µ(1 − pd);

(ii) there must exist m − 1 − i points inside the crescent of J , the expected number of points
is µpd ;

(iii) there must exist n − 1 − i points inside the crescent of I, the expected number of points
is also µpd ;

(iv) the distance r between I and J may assume any value in the interval [0,∞), allowing the
volume Vd(r) and expected number of points µ = λdVd inside it also vary from 0 to ∞
(continuous value).

Taking these conditions altogether, one obtains the following expression for the probability
P (d)

m,n = P (d)
n,m:

P (d)
m,n =

∫ ∞

0
dµ

min(m−1,n−1)∑
i=0

[µ(1 − pd)]i e−µ(1−pd)

i!
· (µpd)

m−1−i e−µpd

(m − 1 − i)!
· (µpd)

n−1−i e−µpd

(n − 1 − i)!
.

Collecting the factors which do not depend on µ, the remaining integral can be written in
terms of the gamma function:

∫ ∞
0 dµµm+n−2−i e−µ(1+pd) = �(m + n− 1 − i)/(1 + pd)

m+n−1−i

and one obtains the original form of Cox probabilities:

P (d)
m,n =

min(m−1,n−1)∑
i=0

(m + n − 2 − i)!

i!(m − 1 − i)!(n − 1 − i)!

(1 − pd)
ipm+n−2−2i

d

(1 + pd)m+n−1−i
(2)

with m = 1, 2, . . . ,∞ and n = 1, 2, . . . ,∞. Letting i vary from 1 to min(m, n) and
rearranging the terms, one has

P (d)
m,n

P
(d)
1,1

=
min(m,n)∑

i=1

Mult

(
i − 1,m − i, n − i; 1 − pd

1 + pd

,
pd

1 + pd

,
pd

1 + pd

)
(3)

P
(d)
1,1 = 1

1 + pd

, (4)
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Table 1. Some values of neighbourhood probability. For low dimensionalities, one uses
equation (2). An interesting limiting case is d = 0, which yields p0 = ∫ 1/4

0 dt/[π
√

t (1 − t)] =
1/3. For d � 1, one uses equation (6) and for the random link model d → ∞, one uses
equation (9).

d pd P
(d)
1,1 P

(d)
1,2 P

(d)
2,2

0 1/3 3/4 3/16 15/32
1 1/2 2/3 2/9 10/27

2 2π+3
√

3
6π

6π

8π+3
√

3
6π(2π+3

√
3)

(8π+3
√

3)2
6π(40π2+12

√
3π+27)

(8π+3
√

3)3

3 11/16 16/27 176/729 6032/19683
.
.
.

.

.

.
.
.
.

.

.

.

�1 1 − αd (1 + pd)−1 pd(1 + pd)−2 (1 + p2
d )(1 + pd)−3

∞ (rl) 1 1/2 1/4 1/4

where P
(d)
1,1 is the couple density (mutually nearest neighbours) and Mult(na, nb, nc;πa,

πb, πc) = (na + nb + nc)!πna
a π

nb

b πnc
c

/
(na!nb!nc!) is the multinomial distribution.

Numerical values of equations (1) and (2) are shown in table 1. Note that the Cox
probability distribution is not a joint distribution. The summation

∑∞
m,n=1 P (d)

m,n diverges since
for each neighbourhood degree m it must be normalized

∑∞
n=1 P (d)

m,n = 1 and one obtains the
mean 〈n〉 = m+pd and the variance 〈n2〉−〈n〉2 = (2m+pd −1)pd . The system dimensionality
d is the bare parameter that emerges from the medium while the considered neighbourhood
order m is fixed according to the convenience.

3. Random link model and high dimensionality probabilities

The high dimensionality can be obtained directly from Cox probabilities. In this procedure,
one can easily obtain the first-order correction from the random link model neighbourhood
probabilities. Next we recall that we are considering the thermodynamic limit and give a
geometrical interpretation for the random link expression, which corresponds to all the points
being on the surface surrounding the volume Vd . In the following we correct the random link
model neighbourhood probabilities to finite-size systems.

3.1. Thermodynamic limit

Let us consider the high dimensionality situation (d � 1). This corresponds to take b =
(d + 1)/2 � a = 1/2 in equation (1). Since b � a, the approximation B(a, b) ≈ �(a)/ba

can be used for Iz(a, b) ≈ ba/�(a)
∫ z

0 dt ta−1(1 − t)b. Once t � z = 1/4 implies t 
 1,
the approximation (1 − t)b = eb ln(1−t) ≈ e−bt yields Iz(a, b) ≈ γ (a, bz)/�(a), where
γ (a, b) = ∫ b

0 dt ta−1 e−t is the non-normalized incomplete gamma function [23], which

presents the following property γ (1/2, x) = 2
∫ √

x

0 dt e−t2 = √
πerf(

√
x) with the error

function [23] defined by erf(z) = (2/
√

π)
∫ z

0 dt e−t2
which monotonically increases from

erf(0) = 0 to erf(∞) = 1. Since a = 1/2, the following property [23] can be used:
Iz(a, b) ≈ γ (1/2, bz)/�(1/2) = erf(

√
bz) and equation (1) can be re-written as

pd ≈ erf

(√
d

8

)
, (5)

where a characteristic dimensionality d0 = 8 naturally emerges from the analysis.
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The complementary error function is defined by erfc(z) = (2/
√

π)
∫ ∞
z

dt e−t2 =
1 − erf(z). For |z| � 1: erfc(z) = e−z2

/(z
√

π)(1 − z2/2 + · · ·) [23]. A further approximation
can be performed noticing that erfc(z) = 1 − erf(z), so that for |z| � 1, it can be written as

pd ≈ 1 − erfc

(√
d

8

)
= 1 − αd, (6)

where

αd = 1√
π

e−d/8

√
d/8

(
1 − 4

d
+ · · ·

)
(7)

is an approximation for the two-hypersphere intersection relative volume.
Using 1 − pd ≈ αd and pd ≈ 1, the summation of equation (2) gives Cox probabilities

as a power series in αd for high dimensional systems:

P (d�1)
m,n = P (rl)

m,n +
22−(m+n)

B(m − 1, n − 1)
αd + · · · , (8)

where in the random link approximation (d → ∞) this probability is

P (rl)
m,n

P
(rl)
1,1

= 1

2m+n−2

�(m + n − 1)

�(m)�(n)
= Bin

(
m − 1, n − 1,

1

2
,

1

2

)
(9)

P
(rl)
1,1 = 1

2
, (10)

with P
(rl)
1,1 being the couple density and Bin(na, nb;πa, πb) = (na + nb)!πna

a π
nb

b

/
(na!nb!) is

the binomial distribution. Simple expressions can be obtained such as P
(rl)
1,n = 1/2n, P

(rl)
2,n =

n/2n+1.
In the high dimensionality limit d → ∞, the relative volume of the crescent

(equation (1)) tends to 1 (pd → 1) and the expected number of points µ(1 − pd) inside
the intersection vanishes. Since limpd→1[(1 − pd)/(1 + pd)]i = δi,0, where δi,j is the
Kronecker delta, the multinomial distribution in equation (3) becomes the binomial distribution
of equation (9). This is easily seen if one considers a hypersphere of radius r inside in
a hypercube of edge 2r , as the dimensionality increases the hypersphere volume decreases
relatively to the hypercube and difference of volumes increases meaning that all the points lie
on the external volume to the hypersphere [25].

The numerical values related to the high dimensionality cases are shown in table 1.

3.2. Finite size system

The RPP high dimensional limit d → ∞ corresponds to the RLM, where all distances
become i.i.d. random variables. Since Euclidean distances are only a means to obtain the
ranking neighbourhood probabilities, it is independent of particular choice for the distance
probability distribution function (pdf) [16]. For simplicity, we will consider uniform deviates
in the interval [0, 1] for the distances among the N points.

As before, let I be the mth nearest neighbour of J and J be the nth nearest neighbour of
I. Thus, the following conditions hold:

(i) the distance x from I to J may assume any value in the interval [0, 1],
(ii) the distances from J to each of its m − 1 nearest neighbours must be less than x and

(iii) the distances from J to each of its N − m − 1 farthest neighbours must be greater than x,
as well as
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Figure 2. Schematic illustration of the points I and J and their neighbours in a N-point random
link model.

(iv) the distances from I to each of its n − 1 nearest neighbours must be less than x and
(v) the distances from I to each of its N − n − 1 farthest neighbours must be greater than x.

Figure 2 illustrates the situation.
It also must be noticed that:

(i) choosing an arbitrary point I, its mth nearest neighbour is automatically set, and there is
N − 1 possibilities for this,

(ii) it must be counted all possible combinations in distributing the N − 2 neighbours of J

between the m − 1 nearest and the N − m − 1 farthest than J ,
(iii) the same counting must be done for the N − 2 neighbours of I.

Combining these three countings and those five distance restrictions, one has

P (rl,N)
m,n = (N − 1)[(N − 2)!]2

(m − 1)!(N − m − 1)!(n − 1)!(N − n − 1)!

×
∫ 1

0
dx

[∫ x

0
dy

]m+n−2

·
[∫ 1

x

dy

]2N−m−n−2

Since
∫ 1

0 dx xm+n−2(1 − x)2N−m−n−2 = B(m + n − 1, 2N − m − n − 1) = (m + n − 2)!(2N −
m − n − 2)!/[(2N − 3)(2N − 4)!] then

P (rl,N)
m,n

P
(rl,N)
1,1

= Hypg(N − 2, N − 2;m − 1, n − 1) (11)

P
(rl,N)
1,1 = N − 1

2N − 3
, (12)

with m = 1, 2, 3, . . . , N − 1 and n = 1, 2, 3, . . . , N − 1, where Hypg(Na,Nb; na, nb) =(
Na

na

)(
Nb

nb

)/(
Na+Nb

na+nb

)
is the hypergeometric distribution and P

(rl,N)
1,1 is the couple density. These

equations (equations (11) and (12)) reduce to equations (9) and (10) as N � 1.
Figure 3 shows P (rl,N)

m,n as a function of n in a ten-point RLM. Note that each curve reaches
its maximum at the reflexive case m = n and that they are symmetric in pairs with respect to
N/2.

4. Random map model

Breaking the distance symmetry constraint Dij = Dji in the RLM leads to the RMM. The
RMM is the mean field approximation to several problems and analytical results may be
obtained. Also, Cox probabilities can be obtained for the RMM.
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Figure 3. Neighbourhood probabilities in a ten-point RLM. The distributions are discrete and the
lines are only a guide to the eyes.

In the case which the constraint Dii = 0,∀i is preserved, if an arbitrary point I is chosen,
its mth neighbour J is automatically set, but the nth neighbour of J is equally probable to
be anyone of the other N − 1 points, since the distances are totally independent. Thus, the
probability P (rm)

m,n that the point I is the nth neighbour of its mth neighbour is simply:

P (rm)
m,n = 1

N − 1
, (13)

where m = 1, 2, . . . , N − 1 and n = 1, 2, . . . , N − 1.
On the other hand, in the case which Dii �= 0 is allowed, the probability P (rm)

m,n is twice
as large for reflexive neighbours than for non-reflexive ones, because now one must consider
that every point is always its own mth nearest neighbour, for some m. Therefore

P (rm)
m,n = 1 + δm,n

N + 1
, (14)

where δm,n is the Kronecker delta, m = 1, 2, . . . , N and n = 1, 2, . . . , N .
Note that in the thermodynamic limit N � 1, these cases are still distinguishable due to

the presence of the factor 2 for the reflexive neighbours.

5. Conclusion

Using only Poisson distribution, Cox probabilities have been obtained through a simple
derivation and they have been identified with the multinomial distribution. Writing the
dimensionality parameter pd in terms of the normalized incomplete beta function allowed us to
obtain the high dimensional approximation for the neighbourhood probabilities in Poissonian
processes (RPP, for instance) as the binomial distribution.

Using the same line of reasoning, the neighbourhood probabilities have been obtained
for RLM finite-size systems. In this case the probabilities have been identified with the
hypergeometric distribution. Also, simple expressions have been obtained for the RMM.

Up to now, we are devoting efforts to try to obtain the neighbourhood probabilities for
finite-size and low-dimensionality systems.
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